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Derivation of cardiac output and alveolar
ventilation rate based on energy expenditure
measurements in healthy males and females

Pierre Brochu,?* Jules Brodeur® and Kannan Krishnan®

ABSTRACT: Physiologically based pharmacokinetic modeling and occupational exposure assessment studies often use
minute ventilation rates (VE), alveolar ventilation rates (VA) and cardiac outputs (Q) that are not reflective of the
physiological variations encountered during the aggregate daytime activities of individuals from childhood to adulthood.
These variations of VE, VA and Q values were determined for healthy normal-weight individuals aged 5-96 years by using
two types of published individual data that were measured in the same subjects (n=902), namely indirect calorimetry
measurements and the disappearance rates of oral doses of deuterium (*H) and heavy-oxygen ('20) in urine monitored by
gas-isotope-ratio mass spectrometry. Arteriovenous oxygen content differences (0.051-0.082 ml of O, consumed ml™' of
blood) and ratios of the physiological dead space to the tidal volume (0.232-0.419) were determined for oxygen
consumption rates (0.157-0.806 | min™") required by minute energy expenditures ranging from 0.76 to 3.91 kcal min™".
Generally higher values for the 2.5th up to the 99th percentile for VE (0.132-0.774 1 kg™* min~", 4.42-21.69 l m2 min™"), VA
(0.093-0.553 | kg™ min™", 3.09-15.53 I m™2 min™"), Q (0.065-0.330 | kg™" min™", 2.17 to 9.46 | m™2 min~") and ventilation-
perfusion ratios (1.12-2.16) were found in children and teenagers aged 5-<16.5 years compared with older individuals. The
distributions of cardiopulmonary parameters developed in this study should be useful in facilitating a scientifically sound
characterization of the inter-individual differences in the uptake and health risks of lipophilic air pollutants, particularly as
they relate to younger children. Copyright © 2011 John Wiley & Sons, Ltd.
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INTRODUCTION

In previous publications (Brochu et al., 2006a-c, 2011) we have
developed a methodology for the determination of physiolog-
ical daily inhalation rates of free-living individuals integrating
both night-time and daytime respiratory parameters, namely
oxygen uptake factors (H) and ventilatory equivalents (VQ). This
approach was based on published input measurements of
oxygen consumption rate (VO,), carbon dioxide production
(VCO,) and minute ventilation rate (VE) in a large number of
human subjects in order to determine not only the central
values but also the standard deviations of H and VQ values. The
latter values were then integrated with basal daily energy
expenditures (BEE) and total daily energy expenditures (TDEE),
that are systematically measured using the doubly labeled
water method (DLW), into the calculation process of means and
distribution percentiles of physiological daily inhalation rates.
This method takes into account voluntary and involuntary
energy expended in unrestrained free-living subjects during
the entire day (i.e. 24 h), on a daily basis during 7-21 days and
only requires periodic body fluid samples (usually urine or
saliva) for spectrometric measurements of disappearance rates
of oral doses of water isotopes (International Dietary Energy
Consultancy Group, 1990).

Physiologically based pharmacokinetic (PBPK) simulation
studies allow the determination of the internal dose of
xenobiotics. In the case of airborne pollutants, PBPK models
require, in addition to many other input parameters, cardiac
output and alveolar ventilation rate (Krishnan and Andersen,

2001). PBPK modeling and occupational exposure assessment
studies would benefit from the use of values of VE, alveolar
ventilation rate (VA) and cardiac output (Q) that are reflective of
the physiological variations encountered during the aggregate
daytime activities over an entire 24 h period, as well as the
statistical distribution specific to a group of individuals. For
example, the VE value of 2083 | min~', currently used for
occupational exposure assessments, is based on the assumption
that workers inhale 10 m* in an 8 h workday (US Environmental
Protection Agency, 1992). Values for VA (3.83-5.87 | min™') and
Q (4.04 to 6.731 min™") usually used during PBPK simulation
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studies are those for subjects at rest (Arms and Travis, 1988; US
Environmental Protection Agency, 1988; Travis and Hattemer-
Frey, 1991; Krishnan and Andersen, 2001; Price et al., 2003;
Haddad et al., 2006; Valcke and Krishnan, 2009). Finally, despite
the fact that variations of minute energy expenditures (E) and
VO, values as a function of time and age are essential for the
adequate understanding of the human physiology (Durnin and
Passmore, 1967; Elia, 1992, 1997), the distributions of £ and VO,
percentiles have never been determined from childhood to
adulthood. Overall, this may represent a serious shortcoming
when establishing indoor or outdoor hygienic standards for
airborne toxic chemicals.

The present study is therefore intended to determine the
distribution percentiles for E, VO,, VE, Q and VA as a function of
age for healthy normal-weight individuals aged 5-96 years
during their aggregate daytime activities. In this process, we also
developed equations in terms of H, VQ, BEE and TDEE values for
converting energy expenditure data into those relevant
respiratory and cardiovascular parameters.

METHODOLOGY

Study Design

Published BEE and TDEE values measured in the same healthy
normal-weight individuals aged 5-96 years (n =902) by indirect
calorimetry and DLW measurements respectively and taken
from the database reported in Institute of Medicine (2002) were
converted into E, VO,, VE, Q, and VA values corresponding to
their aggregate daytime activities (referred to as a). This was
done using six types of preliminary parameters integrated into
various physiological equations. These include daily energy
costs for growth (ECG), sleep duration, the oxygen uptake factor
during postprandial phase (Hp), arteriovenous oxygen content
difference (AVODa), ventilatory equivalents (VQa) as well as the
ratios of physiological dead space to tidal volume (VDphyso/VTa
ratios, unitless). Values for BEE, TDEE, ECG, sleep duration, Hp
and VQa as well as body weights and heights of subjects per
age group are reported in Brochu et al. (2011), while values for
AVODa and VDppyso/VTa ratios were determined in the present
paper. For comparison purposes, VAa/Qa ratios (unitless) were
calculated by using the resulting VAa and Qa values. Values for
Ea, VO,a, VEa, Qa and VAa were also expressed per unit of body
weight and body surface area (BSA in m?). BSA values were
calculated using the formula developed by Mosteller (1987)
based on height (cm) and body weight (Bw in kg) values:

M

height x Bw 03
A= |—— "7
B> [ 3600 }

Some AVODa values and VDgpys./VTa ratios were directly
obtained from the literature, but most of them were calculated
using published sets of Qa, VO,a and VDppysq, VTa measurements.
In Brochu et al. (2011), it was estimated that the oxygenation
during aggregate daytime activities (VO,a*) of males and females
aged 5-96 years ranged from 0.18-0.81 and 0.16-0.73 | min",
respectively. Such spans for VO,a* values were used for the
adequate selection of input data from the literature. Thus, after
the classification of data according to age group, solely the
published AVODa, Qq, VDghysq and VTavalues and the VDppyso/VTa
ratios measured in subjects with experimental VO, demands that

were within the span of VO,a* values were included in the present
study. These subjects were at rest, in either the sitting or standing
position, or performing various activities in the upright position
such as exercising on a bicycle ergometer, walking or runningona
treadmill or, on a few occasions, performing muscular activities. All
published values used in this study were measured at sea level in
healthy sedentary untrained and trained individuals with no
history of respiratory or cardiac problems when breathing an
oxygen concentration of 21%. Data for athletes and explorers
were excluded from the calculation process of E, VO,, VE, Q and VA
values. Note that children and teenagers are hereafter referred to
collectively as children.

Procedures for Energetic Measurements

The theoretical basis of indirect calorimetry is explained in
Ferrannini (1988) and Bursztein et al. (1989), while the DLW
procedure is discussed at length in International Dietary Energy
Consultancy Group (1990). Indirect calorimetry is the most
accurate method (Turell and Alexander, 1964) for determining
BEE values based on the equation developed by Weir (1949),
where gas exchange (i.e. VCO, and VO, in | min™") is monitored
and nitrogen excretion from urine is measured (N in g) in
subjects at rest. Values for VO, and VCO, measured by indirect
calorimetry have also been used for the determination of Hp
value by Brochu et al. (2011). On the other hand, the DLW
method measures the disappearance rates of predetermined
oral doses of doubly labeled water (*H,0 and H,'20) in free-
living subjects, deuterium (°H) and heavy oxygen-18 ('20) being
monitored in saliva, blood or urine samples by gas-isotope-ratio
mass spectrometry over a period of 7-21 consecutive days.
Portions of ingested oral doses of H and '20 react with CO, to
form isotopic carbonic acid which is rapidly transformed into
isotopic bicarbonate ions (*HCOs;~ and HC'®00,7) with the
catalytic action of carbonic anhydrase. These ions leave
erythrocytes to be carried out in the plasma up to the alveolar
area. The reverse transformation then occurs in red blood cells
where all the ?H from the 2HCO5™ returns to isotopic water
molecules (*H,0), while '80 is returned to the H,'®0; some also
participate in the formation of isotopic carbon dioxide
molecules (C'0,). It is therefore a mixture of non-isotopic
(CO,) and isotopic (C'®0,) carbon dioxide that is exhaled. The
disappearance rate of *H reflects water output, while that of %0
represents water output as well as VCO, rates. Differences
between the two disappearance rates can therefore be used to
calculate the VCO, rate which is converted into TDEE values
(International Dietary Energy Consultancy Group, 1990).

Accuracy of Energetic Measurements

Indirect calorimetry measurements of energy expenditure
values are accurate within 0.6-0.7% by comparison with those
measured by steady-state direct calorimetry in a sealed
chamber (or calorimeter) when urinary nitrogen excretions are
considered in order to take into account the metabolism of
proteins (Turell and Alexander, 1964). However, as do most
investigators, the present study avoids the cumbersome
correction for the protein metabolism and accepts an error on
BEE values varying from +1 to +2% (Turell and Alexander, 1964)
and consequently an error ranging from —2 to —1% on the Hp
value (Brochu et al., 2011). As explained by Brochu et al. (2011),
the mean precision of TDEE and ECG values varies from —1.0

J. Appl. Toxicol. 2012; 32: 564-580

Copyright © 2011 John Wiley & Sons, Ltd.

wileyonlinelibrary.com/journal/jat




%)
(o)}
(o)}

Journal of

AppliedToxicology

P. Brochu et al.

to +3.3%. Therefore, the combined effects of, on the one hand,
simultaneous mean errors associated with Hp (i.e. =2 to —1%),
BEE (i.e. +1 to +2%), TDEE and ECG (i.e. —1.0 to +3.3%) values on,
on the other hand, values of VO,a, Qa, VEa, VAa were
determined in the present study.

Ea, VO,a and VEa Values

Precise values for VO,a compared with VO,a* (I min™') were
calculated in this study as well as minute energy expenditures
(Ea in kcal min™") and VEa values (I min™"). According to Brochu
et al. (2011), these values can be expressed in terms of BEE,
TDEE, ECG (kcal per day) and sleep duration (Sld in h per day)
values by using the following equations:

Fo { TDEE-BEE BEE + ECG
(

~ (24-5Id) x 60 1440 @

(TDEE-BEE)  (BEE + ECG)
VOa = H
Oz0 {(24—Sld)><60 1440 | < 3
(TDEE-BEE)  (BEE + ECG)
VEa = Hp x V 4
a {(24—Sld)><60 1aa0 | <HexVQa @)

where 1440 and 60 are the conversion factors from days to
minutes and hours to minutes, respectively, and 24 is the
number of hours in a day.

The value for ECG must be added to BEE in order to take into
account the energy requirements for the growth process from
birth to adulthood (Brochu et al., 2006a). Hp is the volume of
oxygen consumed (at standard temperature and pressure, dry
air, STPD) to produce 1 kcal of energy expended during the
postprandial phase. VQa is the ratio of the VEa value (at body
temperature and saturated with water vapour, BTPS) to the
VO,a value (at standard temperature and pressure, dry air,
STPD), or VEa/VO,a ratio (unitless). The value for Hp of
0.2059 +0.0019 | of O, kcal™ (n=1245) and VQa values varying
from 29.9+4.2 to 329+6.4 (n=826) according to age group
were obtained from Brochu et al. (2011).

Q Values

The Fick principle (Fick, 1870) is one of the cornerstones of
human cardiovascular physiology. The physiological mass
balance between whole body VO,a (I min™'), Qa (I min™") and
the arterial (CaO,) and mixed venous (CvO,) blood oxygen
contents (ml of O, ml™" of blood), is outlined by the eponymous
Fick principle as follows:

V0O,a = Qa x (Ca0,—-Cv0,) = Qa x AVODa (5)
where AVODa = O, extraction (i.e. arteriovenous oxygen content
difference). Therefore,

(TDEE-BEE)  (BEE + ECG) Hp

Q= | 54-51d) x 60 1420 |  AVODa

(6)

VA Values

Values for VDghys (Bohr, 1891; Enghoff, 1938) include volumes of
the conducting airway referred to as anatomical dead space
(Fowler, 1948; Folkow and Pappenheimer, 1955) and some

underperfused alveoli (known as the alveolar dead space) not
contributing to gas exchange (Guyton, 1991). The VA is defined
as the fraction of the inspired tidal volume per minute (VT
multiplied by the respiratory frequency, known as the f value)
which participates in gas exchange (Guyton, 1991). The VAa
(I min™") is related to the VTa (1), VDphysq (1), f (number of breaths
per minute) and VEa (I min™") values by the following equations
(Guyton, 1991):

VAa = (VTa — VDphysqa) X fa (7)
VD
VAa = VEa x [1—%} 8)

Therefore, VAa in this study was computed as follows:

g — { (TDEE-BEE)  (BEE + ECG)}

(24-SId) x 60 1440

VD,
x [1—%} x Hp x VQa

Sleep Duration

Values for sleep duration in individuals aged 5-96 years
(n=13 371) taken from Brochu et al. (2011) were used in the
present study regardless of the proportions of under-, normal-
weight, overweight and obese individuals in the cohorts. As
showed in Brochu et al. (2011), several publications have
reported a correlation between sleep curtailment and a higher
body mass index (BMI) in children and adults, while others are
challenging the view that sleep duration in subjects is inversely
related to BMI increases. Therefore, the influence of shorter
sleep duration of overweight and obese subjects on the order
of magnitude of VO,a, Qa, VEa, VAa values and VA/Qa ratios
was determined using the calculation process developed by
Brochu et al. (2011). A first set of data was calculated by using
sleep duration reported for a cohort of children aged 7.5-16.5
years (Eisenmann et al., 2006; n=3410) and another of adults
35-74.5 years (Bernsteins et al, 2001; n=6324) for which
the proportions of normal-weight, overweight and obese
individuals were known. These data were then compared with
a second set of values that was calculated when initial sleep
durations for 60% of overweight/obese children, and 35% of
overweight as well as 55% of obese adults were decreased by
25%. This calculation corresponds to the worst case scenario of
sleep duration decrease associated with overweight and obese
individuals according to current literature. Further information
regarding such a calculation scenario is presented in Brochu
et al. (2011).

Statistical Analysis

The best fit distributions (i.e. log-normal or normal) for TDEE,
BEE, ECG, sleep duration, body weight, BSA, Hp and VQa values
have been presented in Brochu et al. (2011). Anderson-Darling
goodness-of-fit tests were carried out on individual Qa, AVODa
and VAa values, as well as VDphyso/VTa ratios from the
literature in order to determine their best fit distribution
(Cook et al., 1955; Stahlman and Meece, 1957; Johnson et al.,
1960; Reeves et al., 1961; Becklake et al., 1962; Donevan et al.,
1962; Nelson et al, 1962; Astrand et al, 1964; Frick and
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Somer, 1964; Tabakin et al., 1964; Beaudry et al., 1966; Damato
et al., 1966; Ekblom et al., 1968; Ouellet et al., 1969; Hermansen
et al., 1970; Jones et al., 1970; Pernow and Saltin, 1971; Frostell
et al., 1983; Torre-Bueno et al., 1985).

Means, standard deviations (SD) and distribution percentiles
were calculated for AVODaq, Ea, VO,a, Qa, VEa and VAa values as
well as VDppyso/VTa and VA/Qa ratios. Monte Carlo simulations
were conducted based on random sampling involving 10 000
iterations for each calculation process. Distributions were
truncated at the minimal and maximal observed values based
on a critical analysis of the data compiled from an exhaustive
review of the literature. This was done to eliminate from Monte
Carlo simulations any outliers that did not remain within the
bounds of physiological constraints.

RESULTS

Mean and SD values as well as distribution percentiles of AVODaq,
VDghyso! VTa, Ea, VO,a, VEa, Qa, VAa and VAa/Qa for subjects aged
5-96 years are reported in Tables 1-8 respectively. Mean values as
a function of age for Ea and VO,q, as well as those for VEa, Qa and
VAa are presented in Figures 1-3 and 4-6, respectively. Compared
with rates expressed per unit of body surface area, those expressed
per unit of body weight gradually decrease with age: values for Qa
are reduced by 45 and 50%, respectively, while Eqa, VO,a, VEa, VAa
decrease by 51-59% from 5-96 years (Tables 3-7).

Individual Qa (n =129) and AVODa (n = 129) values were found
to have a better fit with log-normal distributions according
to Anderson-Darling goodness-of-fit tests, compared with

Table 1. Distribution percentiles of arterioveinous oxygen content differences for aggregate daytime activities of healthy
individuals aged 5-96 years

Age group Arteriovenous oxygen content differences® (ml of O, consumed/ml of blood)

for both Percentiles”

gender

(years) n Mean + SD Min Max 2.5nd 10th 25th 50th 75th 90th  97.5th 99th
5to <165 110 0073+0.004 0.057 0088 0065 0067 0070 0.073 0075 0078  0.081 0.082
16.5 to <25 286 0.060 £+ 0.005 0.049 0.076 0.051 0.054 0.056 0.060 0.063 0.066 0.070 0.072
25to <45 193 0.062 +0.004 0.048 0.078 0.054 0.057 0.059 0.062 0.064 0.067 0.070 0.072
45 to <96 30 0.059+0.003 0.051 0.069 0.054 0.056 0.057 0.059 0.061 0.063 0.065 0.066

®Measurements reported in Johnson et al. (1960), Reeves et al. (1961), Donevan et al. (1962), Astrand et al. (1964), Frick and Somer
(1964), Tabakin et al. (1964), Dagenais et al. (1966), Damato et al. (1966), Ekblom et al. (1968), Ouellet et al. (1969), Hermansen et al.
(1970), Jones et al. (1970), Eriksson et al. (1971), Pernow and Saltin (1971), Krone et al. (1972), Zeidifard et al. (1972), Sharma et al.
(1977), Kanstrup and Ekblom (1978), Hossack and Bruce (1982), Frostell et al. (1983), Lewis et al. (1983), Torre-Bueno et al. (1985),
Wagner et al. (1986), Bebout et al. (1989), Miyamoto et al. (1989), Podolsky et al. (1996), Turley and Wilmore (1997a), Rice et al. (1999),
Hopkins et al. (2000), Sun et al. (2000), McGuire et al. (2001), Nottin et al. (2002), Poole et al. (2002), Vinet et al. (2002), Gisolf et al.
(2003), Olfert et al. (2004), Dibski et al. (2005). °Percentiles based on a log—normal distribution according to the Anderson-Darling
test performed on individual data. n = number of individuals; SD = standard deviation; Min = minimum; Max = maximum.

Table 2. Distribution percentiles of ratios of physiological dead space to tidal volume for aggregate daytime activities of healthy
individuals aged 5-96 years

Age group Ratios of physiological dead space to tidal volume® (unitless)

for both Percentiles”

gender

(years) n Mean + SD Min Max 2.5nd 10th 25th 50th 75th 90th  97.5th 99th
5 to <10° 52 0336+0.040 0244 0428 0264 0287 0311 0337 0363 0398 0409 0418
10 to <1659 81 0.294+0.032 0.203 0.386 0.232 0.253 0.272 0.293 0.315 0.345 0.357 0.366
16.5 to <25° 48 0.301+0.026 0.220 0.386 0.250 0.268 0.283 0.300 0.318 0.343 0.351 0.361
25 to <35 112 0.329+0.015 0.280 0.389 0.299 0.310 0.319 0.329 0.339 0354 0359 0.364
35 to <459 79 0.344+0.018 0.281 0.407 0.308 0.321 0.331 0344 0356 0374  0.380 0.386
45to <65" 55 0339+0.021 0273 0405 0299 0312 0325 0340 0354 0374 0380 0.388
65 to <96 36 0381+0.018 0334 0428 0347 0359 0369 0382 0393 0410 0414 0419

2VDphysa/VTa ratios. "Percentiles based on a normal distribution according to the Anderson-Darling test performed on individual
data. “Kerr (1976). “Beaudry et al. (1966) and Kerr (1976).°Mellemgaard (1966), Whipp and Wasserman (1969), Olfert et al. (2004).
"Froeb (1962), Malmberg (1966), Mellemgaard (1966), Whipp and Wasserman (1969), Craig et al. (1971), Frostell et al. (1983), Allen
et al. (1984), Dempsey et al. (1984), Olfert et al. (2004). °Froeb (1962), Malmberg (1966), Mellemgaard (1966), Craig et al. (1971),
Dempsey et al. (1984). "Mellemgaard (1966), Craig et al. (1971), Frostell et al. (1983). Tenney and Miller (1956), Mellemgaard (1966),
Craig et al. (1971). n = number of individuals; SD = standard deviation; Min = minimum; Max = maximum.
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Table 8. Distribution percentiles of ventilation-perfusion rati
aged 5 to 96 years

Age group

for both Mean = SD

genders

(years) 2.5nd 10th
5to <7 1.49+£0.12 1.26 1.34
7 to <10 1.49+£0.12 1.26 1.34
10 to <16.5 1.53+0.24 1.12 1.24
16.5 to <25 1.36+£0.28 0.91 1.03
25 to <35 1.35+£0.22 0.98 1.09
35 to <45 1.34+0.36 0.76 0.92
45 to <65 1.31+£0.29 0.83 0.97
65 to <96 1.22+0.27 0.78 0.91
SD = standard deviation.

Ventilation-perfusion ratios® (I of alveolar air per | of blood)

2VAa/Qa. Values for Qa (I of blood min™") and VAa (I of alveolar air min™") are given in Tables 6 and 7 respectively.

os for aggregate daytime activities of normal-weight individuals

Percentiles
25th 50th 75th 90th 97.5th 99th
1.40 1.49 157 1.64 1.73 1.78
1.40 1.49 1.57 1.64 1.73 1.78
1.37 1.51 1.68 1.84 2.05 2.16
1.16 1.33 1.52 1.72 1.98 2.14
1.20 1.34 1.49 1.63 1.82 1.93
1.08 1.29 1.54 1.82 2.16 240
1.10 1.27 1.48 1.70 1.96 2.11
1.03 1.19 1.38 1.58 1.83 1.98
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Plotted values are for midpoint ages of the age cohorts reported in Tables 3 and 4.
E = minute energy expenditure rate; VO, = oxygen consumption rate; males = solid line; females = dotted line.
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Figure 1. Mean minute energy expenditure (kcal min~") and oxygen consumption rates (I min™') for aggregate daytime activities of normal-weight

males and females as a function of age.

individual values for VAa and VDghyso/VTa ratios, which better
correspond to normal distributions (data not shown in tables).
Values for AVODa associated with VO,a values were found to vary
from 0.059+0.003 to 0.073+0.004 ml of O, mlI™' of blood
(Table 1). Values for VDppy<o/VTa ratios that were calculated based
on simultaneous VDghysq and VTa measurements for healthy
subjects free from cardiac and pulmonary diseases (Table 2)
correspond to VAa/VEa ratios (i.e. 1-VDghyso/VTa) varying from
0.619+0.018 to 0.706 + 0.032.

A 25% reduction in sleep duration for 60% of overweight/
obese children, 35% of overweight adults and 55% of their
obese counterparts decreased VO,a, Qaq, VEa and VAa values of
the entire cohorts by only 0.5% in boys, 0.6-0.7% in girls and 1.2
and 1.0% in adult males and females, respectively, while VA/Qa
ratios were not altered (data not presented in tables).

Maximum mean errors associated with Hp (—1%), BEE (+2%),
ECG and TDEE values (+3.3%) resulted, when combined, in
increasing Ea, VO,a, Qa, VEa and VAa values by —2.8 to +3.9%.
An inverse scenario was observed with minimum mean errors
for Hp (-2%), BEE (+1), ECG and TDEE (-1.0%) values, affecting
Ea, VO,a, Qa, VEa and VAa values by —1.9 to +4.0%. Variations of
Hp, BEE, TDEE and ECG values did not alter the magnitude of the
VAa/Qa ratios (data not given in tables).

DISCUSSION

The respiratory and cardiovascular parameters determined in the
present study are consistent with the range of published values.
VAa/Qa ratios reported in this study (or VAa and Qa values) are in
agreement with the known values in subjects in the upright

J. Appl. Toxicol. 2012; 32: 564-580

Copyright © 2011 John Wiley & Sons, Ltd.

wileyonlinelibrary.com/journal/jat




%)
N
N

Journal of

AppliedToxicology

P. Brochu et al.

0.070

0.060
2\\
0.050

0.040

0.030

0.020

0.010 OBo

0.000

=0

Mean rates for E (kcal/kg-min) and VO, (L/kg-min)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

Age (years)
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Figure 2. Mean minute energy expenditure (kcal kg~' min~") and oxygen consumption rates (I kg~' min~") for aggregate daytime activities of

normal-weight males and females as a function of age.
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Figure 3. Mean minute energy expenditure (kcal m™ min~') and oxygen consumption rates (I m™2 min™") for aggregate daytime activities of normal-

weight males and females as a function of age.

position when their experimental VO, demands are within the
span of VO,a values. This concordance is reflective of the
adequacy of the processes and sets of input parameters used for
the determination of VAa and Qa values (i.e. VEa, VDppyso/VTa
and VO,a, AVODa respectively), and of course for the calculation
of VEa (i.e. Ea, Hp, VQa) as well as VO,a (i.e. Ea, Hp). For instance,
mean and individual VA/Q ratios reported in the literature for
resting adults range from 0.74+0.09 to 0.87 +£0.28 (n=77) and
from 0.58 to 1.13 (n=20), respectively (Farhi and Rahn, 1955;
West and Dollery, 1960; West, 1962; Lenfant, 1963; Ayres et al.,

1964; Johnson and Miller, 1968; West et al., 1974; Zwart et al.,
1976; Frostell et al., 1983; Rhodes et al., 1989; Yem et al., 2006).
The span of these ratios is in accordance with values of the gap
between the 2.5th and 10th percentile VAa/Qa ratios varying
from 0.78 to 1.09 for individuals aged 16.5-<96 years with
associated VO,a values (0.157-0.426 | min™"); this matches well
with typical published VO, demands (0.236-0.454 | min™") for
resting subjects (n=46) aged 19-81 years (Damato et al., 1966;
Bachofen et al., 1973). Spans of VAa/Qa ratios from the 2.5th to
99th percentile in individuals aged 16.5-<25 years and from 10th

wileyonlinelibrary.com/journal/jat
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Figure 4. Mean minute ventilation rates, alveolar ventilation rates and cardiac outputs (I min™") for aggregate daytime activities of normal-weight

males and females as a function of age.
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Figure 5. Mean minute ventilation rates, alveolar ventilation rates and cardiac outputs (I kg~' min™") for aggregate daytime activities of normal-

weight males and females as a function of age.

to 99th percentile in those 35-<45 years of age range from 0.91 to
2.14 (VEa from 9.22 to 30.41) and from 0.92 to 2.40 (VEa from 9.28
to 31.39 | min™") respectively. By comparison, VA/Q ratios vary
from 0.90 to 2.45 based on VA and Q values measured in females
aged 20-30 years (n =8) inhaling about the same volume of air
varying from 9 to 31 | min™' (Olfert et al, 2004). These 99th
percentile VAa/Qa ratios of 2.14 and 2.40 for VEa of 30.41 and
31.39 | min~', respectively, are also consistent with the higher
value of VA/Q ratio of 2.61 resulting from measurements in men
aged 20-30 years (n=7) when they were performing activities
requiring the higher VE value of 38.2 | min™" (Olfert et al., 2004).
The 99th percentile VAa/Qa ratio of 1.93 for VO,a ranging from

0.648-0.796 | min~" in individuals aged 25-<35 year is confirmed
by VA/Q ratios ranging from 2.00 to 2.01 based on simultaneous
VA and Q measurements in females aged 23.6-30.2 years (n=17)
by Hopkins et al. (2000) during slightly higher VO, demands
(0.79-0.83 | min™"). No published VAa/Qa ratio is available for
older individuals. However, VEa values used to calculate VAa
values as well as Qa values for older individuals are in agreement
with published values. Spans of VEa values in males and females
aged 45-<65 years between the 2.5th and 99th percentile range
from 6.78 to 28.06 | min™' (VO,a from 0.240 to 0.671 | min™"),
while those in males 65-96 years old vary from 4.52 to 25.16 |
min~' (VO,a from 0.157 to 0.611 | min™"). Such VEa values are in

J. Appl. Toxicol. 2012; 32: 564-580
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Figure 6. Mean minute ventilation rates, alveolar ventilation rates and cardiac outputs (I m™ min™") for aggregate daytime activities of normal-

weight males and females as a function of age.

accordance with published VE values varying from 5.6 to 32.3 |
min~" (VO, from 0.236 t0 0.797 | min™") in adults aged 45-63 years
(n=40) and from 5.71 to 25.1 | min~" (VO, from 0.167 to 0.673 |
min~") in males 65-91 years old (n =29) respectively (Robinson,
1938; Cohn et al., 1954; Tenney and Miller, 1956; Raine and Bishop,
1963; Damato et al., 1966; Bachofen et al., 1973; Nery et al., 1982;
Frostell et al., 1983). The span between the 25th and 99th
percentile Qa values for individuals aged 45-96 years ranging
from 3.89 to 11.65 | min™" (VO,a from 0.230 to 0.671 | min™")
agrees with published values ranging from 3.7 to 12.30 | min™"
(VO, from 0.202 to 0.647 | min™") for subjects aged 45-73 years
(Reeves et al, 1961; Damato et al, 1966; Emirgil et al., 1967;
McGuire et al., 2001; n =48).

Regarding children aged 10-<16.5 years, the 2.5th percentile
VAa/Qa ratio of 1.12 (VO,a from 0.229 to 0.266 | min™") is in
agreement with those varying from 1.07 to 1.17 estimated on
the basis of ratios varying from 0.85 to 0.93 for boys aged 11 to
13 years (n=9) in the supine position during VO, demands
ranging from 0.24 to 0.25 | min~" (Koch and Eriksson, 1973). The
latter ratios were increased by 25.3% in order to compensate for
the proportional decrease of blood flow that is observed when
subjects change from a supine to an upright position (Reeves
et al., 1961; Damato et al., 1966; Hossack and Bruce, 1982; Gisolf
et al., 2003). Our 99th percentile VAa/Qa ratio value of 2.16 for
the same age groups (VO,a from 0.681 to 0.806 | min™") is
consistent with higher VA/Q ratio of 2.49 measured for boys
(n=9) in the sitting position during much higher VO,
requirements of 1.14 | min™" (Koch and Eriksson, 1973). The
gap between these lower and upper limits of VA/Q ratios
varying from 1.07 to 2.49 based on data reported in Koch and
Eriksson (1973) confirms the magnitude of the span between
the 2.5th and 99th percentile VAa/Qa ratios ranging from 1.12 to
2.16 in children aged 10-<16.5 years. The magnitudes of VAa
and Qa values for younger children are confirmed by published
measurements. For instance, the span between the 25th and
90th percentile VAa values ranges from 5.26 to 8.63 (VO,a from
0.259 to 0417 | min™") in children aged 7-<10 years. By
comparison, VA values varying from 5.03 to 9.03 | min~' have

been measured in those aged 6-17 years (n=56) during
comparable VO, demands ranging from 0.262 to 0.389 | min™"
(Zapletal et al., 1987). The 97.5th percentile Qa values of 6.73 |
min~" in boys and 6.23 | min~" in girls aged 7-<10 years for
VO,a of 0.487 and 0.446 | min~', respectively, are also in
accordance with mean values of 6.8 | min™" in males (n=12) and
6.60 | min™" in females (n=12) aged 7-9 years measured during
light activities with VO, demands of 0.55 and 0.51 | min™
respectively (Turley and Wilmore, 1997a).

As expected, mean VAa/Qa ratios in children aged 5-<16.5 years
(1.49+£0.12 to 1.53+0.24) are higher than those for older
individuals 16.5-96 years old (1.22+0.27 to 1.36%0.28). In
response to higher oxygen demands associated with higher
energy expenditures in children aged 5-<16.5 years (0.044 £ 0.014
t0 0.063+0.014 kcal kg™' min™", 1.40 +0.40 to 1.72 + 0.56 kcal m™2
min~"), when compared with lower oxygen demands in older
individuals aged 16.5-96 years (0.025 + 0.007 to 0.038 +0.007 kcal
kg™ min~', 0.88+0.25-1.44+0.25 kcal m™2 min™"), VA (and thus
VE) values increase in order to sustain adequate oxygen blood
concentrations, while the Q values rise in order to increase oxygen
transport to all body tissues. Higher oxygen uptakes in children
compared with those in older individuals are reflected by higher
number of alveoli per unit of body weight and body surface area.
For instance, the number of alveoli determined in children 4 and
8 years of age is 15.86 and 11.20 x 10° alveoli kg™', or 383.6 and
304.4 x 10° alveoli m™ respectively, compared with much lower
values in adults: 3.84 x 10° alveoli kg™" or 155.8 x 10° alveoli m™2
(Dunnill, 1962). These values are consistent with those reported by
Davies and Reid (1970) as well as Angus and Thurlbeck (1972).

Thus, alveolar ventilation rates must maintain a relatively high
level of alveolar and arterial oxygen partial pressure in order to
compensate for temporary biochemical differences that are
observed in children aged 5-<16.5 years compared with older
individuals. Lower blood hemoglobin concentrations and
slightly higher concentrations of 2,3-diphosphoglycerate are
observed in children 5-<10 years old compared with those aged
10-<16.5 years (Motoyama et al., 1990). Higher concentrations
of 2,3-diphosphoglycerate in red cells increase the oxygen
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unloading from hemoglobin at the tissue level (Oski and
Delivoria-Papadopoulos, 1970; Card and Brain, 1973; Oski, 1973,
Motoyama et al., 1974). Mean hemoglobin levels for children
aged 2-5, 6-8, 10-12 and 14-16 years are 11.9+1.2 (n=22),
126+£0.8 (n=41),13.2+09 (n=54) and 144+ 14 ¢ dI' (n=34)
in boys and 124+09 (n=20), 12.7+1.0 (n=10), 13.2£1.0
(n=29) and 134+1.2 g dI”" (n=15) in girls, respectively (Spurr
et al., 1992). These values, which are in agreement with other
blood hemoglobin concentrations varying from 12.99+0.31 to
139+1.3 g dI”' (n=186) for children 7-13.7 years of age
(Astrand, 1952; Eriksson et al., 1971; Koch and Eriksson, 1973;
Turley and Wilmore, 19973, b; Obert et al., 2003; Vinet et al.,
2003), are lower than those for adults aged 18-89 years (n =504)
ranging from 13.00+1.25 to 15.9+1.2 g dI”' (Rotta et al., 1956;
Tenney and Miller, 1956; Astrand et al., 1964; Ekblom et al., 1968;
Holmér et al., 1974; Kanstrup and Ekblom, 1982; Bebout et al.,
1989; Stringer et al., 1997; Proctor et al, 1998a, b, 2003; Sun
et al., 2000; Poole et al., 2002; Mourtzakis et al., 2004; Beck et al.,
2006). Overall, immature mechanisms for oxygen transport to
body tissues with higher energy expenditures in children
5-<16.5 years old provide a reasonable explanation for the
unique values of VA and Q specific to this age group.

The magnitude of inter-individual variability of 8.4 for cardiac
output and 13.4 for alveolar ventilation rate was calculated as
the ratio of the highest 99th percentiles of 0.330 and 0.553 |
kg’1 per day (Tables 6 and 7) to the lowest 1st percentiles of
0.039 and 0.041 | kg™' per day, respectively (data not shown in
tables) in males and females aged 5-96 years. The magnitude of
human variability in Q and VA values, as reflected by the lowest
50th percentiles of 0.084 and 0.100 | kg™ per day (Tables 6 and
7) and the highest 95th percentiles of 0.262 and 0.413 | kg™’
per day (data not shown in tables) correspond to factors of 3.1
and 4.1, respectively. The impact of such inter-individual
variability in Q (i.e. 3.1-8.4) and VA values (i.e. 4.1-13.4) should
be assessed along with the variability in other pharmacokinetic
determinants, in order to evaluate the adequacy of the default
uncertainty factor or the human kinetic adjustment factor
currently used in health risk assessment (Renwick, 2000; World
Health Organization, 2005).

CONCLUSION

The present study provides a complete and original set of key
respiratory and cardiovascular parameters (i.e. Ea, AVODa
VO,a, VEa, Qa, VAaq, values and VDghyso/VTa, VAa/Qa ratios),
with their distributions, for healthy normal-weight males and
females aged 5-96 years old during their aggregate daytime
activities. As done by Brochu et al. (2011) for the selection of
input literature data when calculating Hp and VQa values,
solely data measured in subjects in the upright position during
VO, demands that were within the span of VO,a* values were
used in this study. Such a procedure assures that data
included in the calculation processes of VO,a, VEa, Qa, VAaq,
values and VAa/Qa ratios adequately describe daytime
activities for individuals of different age groups. The fact that
the spans of VO,a values per age group appear to be in
agreement with those for VO,a* provides added value to this
approach.

Determination of energy expenditures during aggregate
daytime activities (i.e. Ea) for each age group by subtracting
published BEE from TDEE values that are measured for the same
subjects by the DLW method is unique. Indirect calorimetry

measurements (n=902) in normal-weight males and females
and disappearance rates of oral doses of water isotopes (*H,O
and H,'20) in urine for an aggregate period of over 14 000 days
were used for the calculation of Ea values. In addition, the
accuracy of VO,a, VEa, Qa, VAq, values expressed in | min~',
I kg7' min" as well as | m™ min™' and VAa/Qa ratios is
enhanced by the facts that: (1) the weight and height, as well as
the BEE and TDEE values used in the calculation processes, were
available for each subject when conducting the DLW method;
(2) each TDEE value systematically encompasses voluntary and
involuntary energy expended in unrestrained free-living sub-
jects each minute of the day, 24 h per day, on a daily basis
during 7-21 days; and (3) in the worst case scenario,
simultaneous extreme mean errors for Hp (—2 to —1%), BEE
(+1 to +2%) and TDEE (-1.0 to +3.3%) values only affect Eq,
VO,a, Qa, VEa, VAa values by —2.8 to +4.0%.

The absorption rates of inhaled gases and vapors of
xenobiotics with high or low blood/gas phase solubility ratios
are increased by higher VA or Q values respectively (Klaassen,
1996). In the present study, generally higher 2.5nd to 99th
percentile VEa (0.132-0.774 | kg™' min™', 442-2169 | m™
min~"), VAa (0.093-0.553 | kg™" min™", 3.09-15.53 | m™ min™")
and Qa values (0.065-0.330 | kg™ min™', 2.17-9.46 I m™2 min™"),
as well as VAa/Qa ratios (1.12-2.16) were found in normal-
weight children 5-<16.5 years of age when compared with
older individuals (VEa 0.076-0.461 | kg™' min™', 2.80-16.99 | m™2
min~"; Qa 0.045-0.201 | kg™' min™" and 1.63-7.24 | m™ min™";
VAa 0.047-0.312 1 kg™" min™" and 1.73-11.63 | m™ min™"; VAa/
Qa ratios 0.78-2.40). Therefore, all factors being equal, the age-
related differences in the respiratory rates and cardiac output
can have a direct effect on the intake and uptake of inhaled
gases and vapors, notably liposoluble air pollutants by the
respiratory tract in younger individuals.
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